Improving Lexical Choice in Neural Machine Translation

نویسندگان

  • Toan Q. Nguyen
  • David Chiang
چکیده

We explore two solutions to the problem of mistranslating rare words in neural machine translation. First, we argue that the standard output layer, which computes the inner product of a vector representing the context with all possible output word embeddings, rewards frequent words disproportionately, and we propose to fix the norms of both vectors to a constant value. Second, we integrate a simple lexical module which is jointly trained with the rest of the model. We evaluate our approaches on eight language pairs with data sizes ranging from 100k to 8M words, and achieve improvements of up to +4.5 BLEU, surpassing phrase-based translation in nearly all settings.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybrid Machine Translation System Based on a Monotone Decoder

In this paper, a hybrid Machine Translation (MT) system is proposed by combining the result of a rule-based machine translation (RBMT) system with a statistical approach. The RBMT uses a set of linguistic rules for translation, which leads to better translation results in terms of word ordering and syntactic structure. On the other hand, SMT works better in lexical choice. Therefore, in our sys...

متن کامل

Neural Reranking Improves Subjective Quality of Machine Translation: NAIST at WAT2015

This year, the Nara Institute of Science and Technology (NAIST)’s submission to the 2015 Workshop on Asian Translation was based on syntax-based statistical machine translation, with the addition of a reranking component using neural attentional machine translation models. Experiments re-confirmed results from previous work stating that neural MT reranking provides a large gain in objective eva...

متن کامل

Improving Word Sense Disambiguation in Neural Machine Translation with Sense Embeddings

Word sense disambiguation is necessary in translation because different word senses often have different translations. Neural machine translation models learn different senses of words as part of an end-to-end translation task, and their capability to perform word sense disambiguation has so far not been quantified. We exploit the fact that neural translation models can score arbitrary translat...

متن کامل

Improving Statistical Machine Translation with Selectional Preferences

Long-distance semantic dependencies are crucial for lexical choice in statistical machine translation. In this paper, we study semantic dependencies between verbs and their arguments by modeling selectional preferences in the context of machine translation. We incorporate preferences that verbs impose on subjects and objects into translation. In addition, bilingual selectional preferences betwe...

متن کامل

A Comparative Study of English-Persian Translation of Neural Google Translation

Many studies abroad have focused on neural machine translation and almost all concluded that this method was much closer to humanistic translation than machine translation. Therefore, this paper aimed at investigating whether neural machine translation was more acceptable in English-Persian translation in comparison with machine translation. Hence, two types of text were chosen to be translated...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1710.01329  شماره 

صفحات  -

تاریخ انتشار 2017